翻訳と辞書 |
Transferred electron device : ウィキペディア英語版 | Gunn diode
A Gunn diode, also known as a transferred electron device (TED), is a form of diode, a two-terminal passive semiconductor electronic component, with negative resistance, used in high-frequency electronics. It is based on the "Gunn effect" discovered in 1962 by physicist J. B. Gunn. Its largest use is in electronic oscillators to generate microwaves, in applications such as radar speed guns and microwave relay data link transmitters. Its internal construction is unlike other diodes in that it consists only of N-doped semiconductor material, whereas most diodes consist of both P and N-doped regions. It therefore does not conduct in only one direction and cannot rectify alternating current like other diodes, which is why some sources do not use the term ''diode'' but prefer TED. In the Gunn diode, three regions exist: two of those are heavily N-doped on each terminal, with a thin layer of lightly n-doped material between. When a voltage is applied to the device, the electrical gradient will be largest across the thin middle layer. If the voltage is increased, the current through the layer will first increase, but eventually, at higher field values, the conductive properties of the middle layer are altered, increasing its resistivity, and causing the current to fall. This means a Gunn diode has a region of negative differential resistance in its current-voltage characteristic curve, in which an increase of applied voltage, causes a decrease in current. This property allows it to amplify, functioning as a radio frequency amplifier, or to become unstable and oscillate when it is biased with a DC voltage. ==Gunn diode oscillators==
The negative differential resistance, combined with the timing properties of the intermediate layer, is responsible for the diode's largest use: in electronic oscillators at microwave frequencies and above. A relaxation oscillator can be created simply by applying a DC voltage to bias the device into its negative resistance region. In effect, the negative differential resistance of the diode cancels the positive resistance of the load circuit, thus creating a circuit with zero differential resistance, which will produce spontaneous oscillations. The oscillation frequency is determined partly by the properties of the middle diode layer, but can be tuned by external factors. In practical oscillators an electronic resonator is usually added to control frequency, in the form of a waveguide, microwave cavity or YIG sphere. The diode is usually mounted inside the cavity. The diode cancels the loss resistance of the resonator, so it produces oscillations at its resonant frequency. The frequency can be tuned mechanically, by adjusting the size of the cavity, or in case of YIG spheres by changing the magnetic field. Gunn diodes are used to build oscillators in the 10 GHz to high (THz) frequency range. Gallium arsenide Gunn diodes are made for frequencies up to 200 GHz, gallium nitride materials can reach up to 3 terahertz.〔V. Gružinskis, J.H. Zhao, O.Shiktorov and E. Starikov, ''Gunn Effect and the THz Frequency Power Generation in n(+)-n-n(+) GaN Structures'', Materials Science Forum, 297--298, 34--344, 1999. ()〕〔Gribnikov, Z. S., Bashirov, R. R., & Mitin, V. V. (2001). Negative effective mass mechanism of negative differential drift velocity and terahertz generation. IEEE Journal of Selected Topics in Quantum Electronics, 7(4), 630-640.〕
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Gunn diode」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|